

CACE Technologies

Per-Packet Information Header Specification

Version 1.0.9

PPI Header Specification Version: 1.0.9

 Date: 5/11/2009

 CACE Technologies, 2007 - 2009 Page 2

Revision History
Date Version Description Author

04/16/2007 0.6 Updated 802.11 common and 802.11n

header, split now into 802.11n basic/MAC

and 802.11n extended/MAC+PHY

Gianluca Varenni

04/18/2007 0.7 Renamed from Airhead to PPI. Minor fixes

and updates

Gerald Combs

05/09/2007 0.8 Fixed the invalid values for MCS, dBm

values and RSSI.

Gianluca Varenni

05/18/2007 0.9 Added abbreviations and acronyms section.

Added member element to the Channel-

Flags element in both 802.11-Common and

802.11n MAC+PHY fields. General

cleanup. Filled in purpose section to clarify

PPI’s intent.

Dustin Johnson

6/11/2007 0.95 Update the “Purpose” section. Explicitly

refer to NTAR

Gerald Combs

6/12/2007 1.0 Bump to 1.0. Gerald Combs

6/15/2007 1.0.1 Fix remaining “Airhead” references Gerald Combs

9/24/2007 1.0.2 Update spectrum section, fix typos Gerald Combs

4/24/2008 1.0.3 Add vendor id 30001 (Mohamed Thaga) Gerald Combs

4/24/2008 1.0.4 Added the definition of the 802.3 Field and

the Aggregation Field

Gianluca Varenni

5/19/2008 1.0.5 Defined the error bits for the 802.3 Field Gianluca Varenni

8/29/2008 1.0.6 Fixed RSSIAntXExt descriptions Dustin Johnson

09/11/2008 1.0.7 Clarified the packet header length Gerald Combs

05/11/2009 1.0.9 Add vendor ID 30006 (Mike Kershaw) Gianluca Varenni

PPI Header Specification Version: 1.0.9

 Date: 5/11/2009

 CACE Technologies, 2007 - 2009 Page 3

Table of Contents

1. Introduction 4

1.1 Purpose 4
1.2 Scope 4
1.3 Definitions, Acronyms and Abbreviations 4
1.4 Notational Conventions 5
1.5 References 5
1.6 Overview 5

2. Overall Description 5

3. PPI Header Format 5

3.1 PPI Packet Header Structure 6
3.1.1 pph_version 6
3.1.2 pph_flags 6
3.1.3 pph_len 6
3.1.4 pph_dlt 6

3.2 PPI Field Structure 6
3.2.1 pfh_type 6
3.2.2 pfh_datalen 7

3.3 Field Processing 7

4. General-Purpose Field Types 7

4.1 Field Descriptions 7
4.1.2 802.11-Common 7
4.1.3 802.11n MAC Extension (basic) 9
4.1.4 802.11n MAC+PHY Extension (Extended) 9
4.1.5 Spectrum-Map 12
4.1.6 Process-Info 12
4.1.7 Capture-Info 12
4.1.8 Host-Name-Info 13
4.1.9 Signature 13
4.1.10 Privacy 13

5. Vendor-Specific Field Types 13

PPI Header Specification Version: 1.0.9

 Date: 5/11/2009

 CACE Technologies, 2007 - 2009 Page 4

1. Introduction

When capturing live network data, it is often useful to collect out-of-band information and provide it along

with in-band packet data. The traditional method of doing this is to prefix each PDU with a meta-

information header (often called a pseudoheader). Current implementations include such information as

802.11 radio information, access server user IDs, and point-to-point link direction.

The Per-Packet Information (PPI) Header is a general and extensible meta-information header format

originally developed to provide 802.11n radio information, but can handle other information as well.

1.1 Purpose

PPI is intended to supplement individual packets received from a hardware or software engine with

interesting data in a light-weight fashion.

Often such data of interest pertains to the PHY layer, but this need not always be the case. Whatever the

carried information may be, the intent is that the information contained is only added to data captured in

real-time, not stored packets.

It is not intended to add arbitrary data to packets, such as annotations. That task is better suited to NTAR.

1.2 Scope

This document defines the general format of the PPI header, along with the formats of several fields.

Performance and security are outside the scope of this document.

1.3 Definitions, Acronyms and Abbreviations

ASCII American Standard Code for Information Interchange

A-MPDU aggregate MAC protocol data unit

A-MSDU aggregate MAC service data unit

CCK complementary code keying

CRC cyclic redundancy check

CR-LF carriage return-line feed

DLT data link type

EVM error vector magnitude

FCS frame check sequence

FHSS frequency-hopping spread spectrum

GFSK gaussian frequency shift key or keying

GID group identifier

HT high throughput

MAC medium access control

MPDU MAC protocol data unit

OFDM orthogonal frequency division multiplexing

PHY physical layer

PPI per-packet information

RF radio frequency

PPI Header Specification Version: 1.0.9

 Date: 5/11/2009

 CACE Technologies, 2007 - 2009 Page 5

RSSI receive signal strength indicator

RX receive or receiver

SGI short guard interval

TSF timing synchronization function

TSFT timing synchronization function timer

UID unique identifier

UTF Unicode transformation format

1.4 Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",

"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted

as described in RFC 2119.

1.5 References

Radiotap manual page: http://netbsd.gw.com/cgi-bin/man-cgi?ieee80211_radiotap+9+NetBSD-current

NTAR documentation: http://www.winpcap.org/ntar/

RFC 2119: http://www.ietf.org/rfc/rfc2119.txt

1.6 Overview

Section 2 provides a description of the PPI header, along with an explanation of its necessity. Section 3

defines the structure of the header, complete with C and C++-compatible data structures. Section 4 defines

each data type. Data structures are assumed to be packed.

2. Overall Description

Existing header formats are typically made up of static data structures filled in by the capture mechanism

and passed to user space. They suffer from the following problems:

 Limited scope. They are restricted to specific elements within a single domain.

 Rigidity. It is either impossible or very difficult to add new elements.

 Fixed DLTs. Each format only supports one encapsulated data link type.

PPI attempts to address each of these issues in a clean, consistent manner. Data elements are formatted as

type-length-value (TLV) triplets, which allows for future expansion of the header while providing

backward compatibility. Per-packet DLTs can be implemented by using an “empty” PPI header.

3. PPI Header Format

Each PPI packet header is made up of a packet header followed by zero or more fields. Each field is a

type-length-value triplet.

PPI headers may contain only a packet header with no field header or field data elements. This removes any

assumption or requirement that supplemental data exists for every packet captured. It also makes it possible

to save packets with multiple data link types in a single capture file.

Multi-byte integers in the packet header and field headers MUST be stored as little-endian. The endian-

ness of field data may be either big- or little-endian, and MUST be noted in the field description. The total

length of the packet header plus all field headers and field data MUST be padded to a 32-bit boundary.

Packet

Header

Field

Header

Field

Data

Field

Header

Field

Data

PPI Header Specification Version: 1.0.9

 Date: 5/11/2009

 CACE Technologies, 2007 - 2009 Page 6

3.1 PPI Packet Header Structure

The PPI packet header provides a version, indicator flags, and the header length:

typedef struct ppi_packetheader {

 u_int8_t pph_version; /* Version. Currently 0 */

 u_int8_t pph_flags; /* Flags. */

 u_int16_t pph_len; /* Length of entire message,

 * including this header and TLV

 * payload. */

 u_int32_t pph_dlt; /* Data Link Type of the captured

 * packet data. */

} ppi_packetheader_t;

3.1.1 pph_version

The version of the PPI header. MUST be set to zero (0).

3.1.2 pph_flags

An 8-bit mask that defines the behavior of the header. The following values are defined:

Bits (Bit 0 = LSB) Values

0 Alignment. 32-bit aligned = 1, non-aligned = 0

Explained further in section 3.3

1-7 Reserved. MUST be 0.

3.1.3 pph_len

The length of the entire PPI header, including the packet header and fields. It MUST be between 8 and

65,532 inclusive.

3.1.4 pph_dlt

This MUST contain a valid data link type as defined in pcap-bpf.h from the libpcap distribution. If an

official DLT registry is ever created by the libpcap development team, then it will supersede this list.

A capture facility can implement per-packet DLTs by setting pph_version to 0, pph_flags to 0, pph_len to

8, and pph_dlt to the DLT of the encapsulated packet.

3.2 PPI Field Structure

Each PPI field includes a type and length:

typedef struct ppi_fieldheader {

 u_int16_t pfh_type; /* Type */

 u_int16_t pfh_datalen; /* Length of data */

} ppi_fieldheader_t;

3.2.1 pfh_type

The type of data following the field header MUST be a valid type value as defined below:

Range Possible Values

0-29,999 General-purpose field. Defined in section 4.

30,000-65,535 Vendor-specific fields. Defined in section 5.

If an unknown field value is encountered, it MUST be skipped according to the length rule in section 3.3.

Implementations MAY mark it as “unknown” as appropriate.

PPI Header Specification Version: 1.0.9

 Date: 5/11/2009

 CACE Technologies, 2007 - 2009 Page 7

3.2.2 pfh_datalen

The length of the data, in bytes, that follows MUST be between 0 and 65,520 inclusive. The end of the

data MUST NOT exceed the total header length.

3.3 Field Processing

The first field header immediately follows the packet header (that is, if the packet header starts at byte 0,

the first field header starts at byte 8). The starting point of each subsequent field header is defined by the

“alignment” bit in pph_flags:

 If the “alignment” bit in pph_flags is set to 1 AND pfh_datalen in field n is not a multiple of 4,

then field n+1 will start at the next multiple of 4. For example, if pph_datalen in field 3 is 9, then

the next three bytes MUST be considered padding, and field 4 will begin at byte 12.

 If the “alignment” bit in pph_flags is 0, then field n+1 will start at the next byte offset following

the data in field n.

The “alignment” bit in pph_flags also applies to field data. That is, if the “alignment” bit is set and the

field type is 7 bytes long, then there will be one byte of padding between the field header and field data.

All padding bytes MUST be set to 0 in order to keep from exposing kernel memory to user space.

4. General-Purpose Field Types

The following general-purpose fields are currently defined. Further general-purpose fields will be defined

in later revisions of this document. Vendor-specific fields may be defined externally.

Type Length

(Bytes)

Description

0-1 RESERVED

2 20 802.11-Common. Common (pre-n and .11n) radio information.

3 12 802.11n MAC Extensions. Extended (.11n) radio information.

4 48 802.11n MAC+PHY Extensions. Extended (.11n) radio information.

5 22-65,520 Spectrum-Map. Radio frequency spectrum information.

6 19-65,520 Process-Info. Process information, e.g. UID and GID

7 ??? Capture-Info. Capture information, e.g. interface, drop counts, etc.

8 4 Aggregation Extension. Interface information for packets coming from

aggregating interfaces.

9 8 802.3 Extension. Information regarding 802.3 (Ethernet) packets.

10 –

29,999

- RESERVED

4.1 Field Descriptions

4.1.2 802.11-Common

Zero or one 802.11-Common fields may be present in a single header. All fields are little-endian.

The 802.11-Common field is loosely based on the existing Radiotap header format. It contains data

common to both pre-n and 802.11n. Total length is 20 bytes.

Field Name Semantics Value Type Length

PPI Header Specification Version: 1.0.9

 Date: 5/11/2009

 CACE Technologies, 2007 - 2009 Page 8

TSF-Timer 7.3.1.10 and 11.1 of IEEE 802.11-1999

Invalid value = 0

Unsigned integer 8 bytes

Flags Packet flags LSB = bit 0. Bits:

Bit 0 = If set, FCS present

Bit 1 = If set to 1, the TSF-timer is in ms, if

set to 0 the TSF-timer is in us

Bit 2 = If set, the FCS is not valid

Bit 3 = If set, there was a PHY error

receiving the packet. If this bit is set, Bit 2

is not relevant

Unsigned integer 2 bytes

Rate Data rate in multiples of 500 Kbps

Invalid value = 0x0000

Unsigned integer 2 bytes

Channel-Freq Radiotap-formatted channel frequency, in MHz

Invalid value = 0x0000

Unsigned integer 2 bytes

Channel-Flags Radiotap-formatted channel flags:

Bit 0-3 = Reserved

Bit 4 = Turbo

Bit 5 = Complementary Code Keying

(CCK)

Bit 6 = Orthogonal Frequency-Division

Multiplexing (OFDM)

Bit 7 = 2 GHz spectrum

Bit 8 = 5 GHz spectrum

Bit 9 = Only passive scan allowed

Bit 10 = Dynamic CCK-OFDM

Bit 11 = Gaussian Frequency Shift Keying

(GFSK) (FHSS PHY)

Bit 12-15 = Reserved

Unsigned integer 2 bytes

FHSS-Hopset Radiotap-formatted Frequency-hopping spread

spectrum (FHSS) hopset

Unsigned integer 1 byte

FHSS-Pattern Radiotap-formatted Frequency-hopping spread

spectrum (FHSS) pattern

Unsigned integer 1 byte

dBm-Antsignal RF signal power at antenna

Invalid value = -128

Signed integer 1 byte

dBm-Antnoise RF noise at antenna

Invalid value = -128

Signed integer 1 byte

 Unlike Radiotap, these fields are packed without any padding or alignment.

PPI Header Specification Version: 1.0.9

 Date: 5/11/2009

 CACE Technologies, 2007 - 2009 Page 9

4.1.3 802.11n MAC Extension (basic)

Zero or one 802.11-Common fields may be present in a single header. Correct parsing the 802.11n-MAC

Extension field depends on values from the 802.11-Common field. If present, it MUST be immediately

preceded by an 802.11-Common field. All 802.11n MAC Extension fields are little-endian.

The 802.11n MAC Extension field contains radio information specific to 802.11n. Total length is 27 bytes.

Field Name Semantics Value Type Length

Flags LSB = bit 0. Bits:

Bit 0 = Greenfield

Bit 1 = HT20 (0) or HT40 (1) indicator

Bit 2 = RX short guard interval (SGI)

Bit 3 = Duplicate RX

Bit 4 = Aggregate

Bit 5 = More aggregates

Bit 6 = Aggregate delimiter CRC error after

this frame

Unsigned integer 4 bytes

A-MPDU-ID Unique A-MPDU ID used for A-MPDU reassembly Unsigned integer 4 bytes

Num-Delimiters Number of zero-length pad delimiters Unsigned integer 1 byte

Reserved Unsigned integer 3 bytes

If the aggregate flag (bit 4 of the Flags field) is set, then each MPDU in a particular A-MPDU MUST have

the same A-MPDU-ID. The A-MPDU-ID SHOULD be randomly assigned in order to prevent improper

reassembly if capture files are merged.

4.1.4 802.11n MAC+PHY Extension (Extended)

Zero or one 802.11-Common fields may be present in a single header. Correct parsing the 802.11n-

MAC+PHY Extension field depends on values from the 802.11-Common field. If present, it MUST be

immediately preceded by an 802.11-Common field. All 802.11n MAC+PHY Extension fields are little-

endian.

The 802.11n MAC+PHY Extension field contains radio information specific to 802.11n. Total length is 48

bytes.

Field Name Semantics Value Type Length

Flags LSB = bit 0. Bits:

Bit 0 = Greenfield

Bit 1 = HT20 (0) or HT40 (1) indicator

Bit 2 = RX guard interval

Bit 3 = Duplicate RX

Bit 4 = Aggregate

Bit 5 = More aggregates

Bit 6 = Aggregate delimiter CRC error after

this frame

Unsigned integer 4 bytes

A-MPDU-ID Unique A-MPDU ID used for A-MPDU reassembly Unsigned integer 4 bytes

Num-Delimiters Number of zero-length pad delimiters Unsigned integer 1 byte

MCS Modulation Coding Scheme Unsigned integer 1 byte

PPI Header Specification Version: 1.0.9

 Date: 5/11/2009

 CACE Technologies, 2007 - 2009 Page 10

Invalid Value = 255

Num-Streams Number of spatial streams. 0 (zero) means that the

information is not available

Unsigned integer 1 byte

RSSI-Combined Combined Received Signal Strength Indication

(RSSI) value from all the active antennas and

channels.

Invalid value = 255

Unsigned integer 1 byte

RSSIAnt0Ctl Received Signal Strength Indication (RSSI) value for

the antenna 0, control channel

Invalid value = 255

Unsigned integer 1 byte

RSSIAnt1Ctl Received Signal Strength Indication (RSSI) value for

the antenna 1, control channel

Invalid value = 255

Unsigned integer 1 byte

RSSIAnt2Ctl Received Signal Strength Indication (RSSI) value for

the antenna 2, control channel

Invalid value = 255

Unsigned integer 1 byte

RSSIAnt3Ctl Received Signal Strength Indication (RSSI) value for

the antenna 3, control channel

Invalid value = 255

Unsigned integer 1 byte

RSSIAnt0Ext Received Signal Strength Indication (RSSI) value for

the antenna 0, extension channel

Invalid value = 255

Unsigned integer 1 byte

RSSIAnt1Ext Received Signal Strength Indication (RSSI) value for

the antenna 1, extension channel

Invalid value = 255

Unsigned integer 1 byte

RSSIAnt2Ext Received Signal Strength Indication (RSSI) value for

the antenna 2, extension channel

Invalid value = 255

Unsigned integer 1 byte

RSSIAnt3Ext Received Signal Strength Indication (RSSI) value for

the antenna 3, extension channel

Invalid value = 255

Unsigned integer 1 byte

Extension

Channel-Freq

Radiotap-formatted extension channel frequency, in

Channel Frequency in MHz

Invalid value = 0x0000. The frequency of the control

channel is stored in the Channel-Freq field of the

802.11 Common header.

Unsigned integer 2 bytes

Extension

Channel-Flags

Radiotap-formatted extension channel flags. The

flags of the control channel are stored in the

Channel-Flags field of the 802.11 Common header.

Bit 0-3 = Reserved

Unsigned integer 2 bytes

PPI Header Specification Version: 1.0.9

 Date: 5/11/2009

 CACE Technologies, 2007 - 2009 Page 11

Bit 4 = Turbo

Bit 5 = Complementary Code Keying

(CCK)

Bit 6 = Orthogonal Frequency-Division

Multiplexing (OFDM)

Bit 7 = 2 GHz spectrum

Bit 8 = 5 GHz spectrum

Bit 9 = Only passive scan allowed

Bit 10 = Dynamic CCK-OFDM

Bit 11 = Gaussian Frequency Shift Keying

(GFSK) (FHSS PHY)

Bit 12-15 = Reserved

dBm-Ant0signal RF signal power at antenna 0

Invalid value = -128

Signed integer 1 byte

dBm-Ant0noise RF noise at antenna 0

Invalid value = -128

Signed integer 1 byte

dBm-Ant1signal RF signal power at antenna 1

Invalid value = -128

Signed integer 1 byte

dBm-Ant1noise RF noise at antenna 1

Invalid value = -128

Signed integer 1 byte

dBm-Ant2signal RF signal power at antenna 2

Invalid value = -128

Signed integer 1 byte

dBm-Ant2noise RF noise at antenna 2

Invalid value = -128

Signed integer 1 byte

dBm-Ant3signal RF signal power at antenna 3

Invalid value = -128

Signed integer 1 byte

dBm-Ant3noise RF noise at antenna 3

Invalid value = -128

Signed integer 1 byte

EVM0 Error vector magnitude for Chain 0

Invalid value = 0

Unsigned integer 4 bytes

EVM1 Error vector magnitude for Chain 1

Invalid value = 0

Unsigned integer 4 bytes

EVM2 Error vector magnitude for Chain 2

Invalid value = 0

Unsigned integer 4 bytes

EVM3 Error vector magnitude for Chain 3

Invalid value = 0

Unsigned integer 4 bytes

PPI Header Specification Version: 1.0.9

 Date: 5/11/2009

 CACE Technologies, 2007 - 2009 Page 12

4.1.5 Spectrum-Map

Zero or more Spectrum-Map fields may be present in a single header. If more than one Spectrum-Map field

is present, each field SHOULD contain unique frequency values. All fields are little-endian.

The Spectrum-Map field is intended to be compatible with the sweep records returned by the Wi-Spy

spectrum analyzer.

Field Name Semantics Value Type Length

Start-kHz Starting frequency in kHz Unsigned integer 4 bytes

Res-Hz Resolution of each sample in Hz Unsigned integer 4 bytes

Amp-Offset-mdBm Amplitude offset in 0.001 dBm, stored as an

unsigned value. The application is expected to

multiply this value by -1, stored unsigned to

prevent endian conversion issues.

Unsigned integer 4 bytes

Amp-Res-mdBm Amplitude Resolution in .001 dBm. Unsigned integer 4 bytes

RSSI-Max Maximum raw RSSI value reported by the device. Unsigned integer 2 bytes

Num-Samples Number of samples Unsigned integer 2 bytes

Sample-Data Array of unsigned bytes. Length is Num-Samples. Unsigned integer variable

This information should be suitable for generating histograms. RSSI values can be converted to dB

utilizing the following formula (including the conversion of Amp-Offset-mdBm to a negative value):

dBm = (RSSI * (Amp_Res_mdBm / 1000)) + (Amp_Offset_mdBm / 1000 * -1)

4.1.6 Process-Info

Zero or one Process-Info fields may be present in a single header. All fields are little-endian.

Field Name Semantics Value Type Length

Process-ID Process ID Unsigned integer 4 bytes

Thread-ID Thread ID Unsigned integer 4 bytes

Process-Path-Len Length of the process name Unsigned integer 1 byte

Process-Path Path and filename of the process UTF-8 string variable

User-ID User ID Unsigned integer 4 bytes

User-Name-Len Length of user name Unsigned integer 1 byte

User-Name User name UTF-8 string variable

Group-ID Primary group ID Unsigned integer 4 bytes

Group-Name-Len Length of primary group name Unsigned integer 1 byte

Group-Name Primary group name UTF-8 string variable

4.1.7 Capture-Info

To be defined.

PPI Header Specification Version: 1.0.9

 Date: 5/11/2009

 CACE Technologies, 2007 - 2009 Page 13

4.1.8 Aggregation Extension

Zero or one Aggregation Extensions may be present in a single header. All Aggregation Extension fields

are little-endian.

The Aggregation Extension contains the zero-based physical interface Id the packet was captured from

when using an aggregating source (i.e. a source of packets delivering packets captured from multiple

interfaces). Total length is 4 bytes.

Field Name Semantics Value Type Length

InterfaceId Zero-based index of the physical interface the packet

was captured from

Unsigned integer 4 bytes

4.1.9 802.3 Extension

Zero or one 802.3 Extensions fields may be present in a single header. All 802.3 Extension fields are little-

endian.

The 802.3 Extension contains information specific to 802.3 packets, like the presence of the Frame Check

Sequence at the end of the packet, and the errors that were detected when the packet was captured. Total

length is 8 bytes.

Field Name Semantics Value Type Length

Flags LSB = bit 0. Bits:

Bit 0 = FCS (4 bytes) is present at the end

of the packet.

Unsigned integer 4 bytes

Errors LSB = bit 0. Bits:

Bit 0 = The frame has an invalid Frame

Check Sequence (FCS)

Bit 1 = The frame has a sequence error. A

valid delimiter sequence consists of

 Idlestart-of-frame(SOF) data,

pad(optional) end-of-frame(EOF)

fill(optional) idle

Bit 2 = The frame has a symbol error.

Bit 3 = The frame has a data error.

Unsigned integer 4 bytes

5. Vendor-Specific Field Types

Type values 30,000 to 65,535 are reserved for vendor-specific applications. Vendor numbers are assigned

by the WinPcap development team, and assignment may be handed over to a formal standards body in the

future. To request a vendor number, send and mail to winpcap-users@winpcap.org.

A vendor-specific type MUST NOT be used without first obtaining an assignment from the WinPcap

development team. The intent behind such a large space for vendor-specific types is to allow easy and

unadulterated registration, thus maintaining some sanity in version tracking and parsing.

Type Length Description

30,000 - Intel Corporation

30,001 - Mohamed Thaga <thagha@yahoo.com>

30,002 - GPS tagging <johnycsh@gmail.com>

mailto:winpcap-users@winpcap.org

PPI Header Specification Version: 1.0.9

 Date: 5/11/2009

 CACE Technologies, 2007 - 2009 Page 14

30,003 –

30,005

- Private < johnycsh@gmail.com>

30,006 - Private <dragorn@kismetwireless.net>

30,007 –

59,917

- Unassigned.

51,918 - Reserved for CACE. (5191810 = CACE16)

51,919 –

65,535

- Unassigned.

mailto:johnycsh@gmail.com
mailto:dragorn@kismetwireless.net

